Crack IBPS Exam 2017 - Quantitative Aptitude Scoring Part (Day-11):
Here in Scoring Part we are providing 10 Questions in simplification, 10 Questions in Approximation, 5 Questions in number Series and 5 Questions in Quadratic Equations, total 30 questions in 20 Minutes. By practicing these questions regularly you can increase your calculation speed and it will help you to increase your score.
Dear Readers, Nowadays most of the aspirants are facing huge trouble to increase the overall marks. To score high you need to practice more and more standard questions daily. “Practice does not make perfect, Only Perfect Practice makes perfect”.
Here in Scoring Part we are providing 10 Questions in simplification, 10 Questions in Approximation, 5 Questions in number Series and 5 Questions in Quadratic Equations, total 30 questions in 20 Minutes. By practicing these questions regularly you can increase your calculation speed and it will help you to increase your score.
Direction (1-10): What value should come in place of question mark (?) in the following questions?
1). [(23.65)^2 - (48.35)^2 ] / 0.9 = ?
1). Answer: a)
? = [(23.65 + 48.35)(23.65 – 48.35)] / 0.9
? = 72 × (– 24.7) / 0.9
or, ? = - 1976
2. 76% of 960 - 45% of 148 = ?% of 5525? = [(23.65 + 48.35)(23.65 – 48.35)] / 0.9
? = 72 × (– 24.7) / 0.9
or, ? = - 1976
2). Answer: e)
? / 100 × 5525 = 76 × 960 /100 – 45 × 148 /100
? / 100 × 5525 = 729.6 - 66.6 = 663
? = 663 × 100 / 5525 = 12
3. (4096)^3.7 ÷ (256)^4.3 × (64)^5 ÷ (16)^-4 = (4)?? / 100 × 5525 = 76 × 960 /100 – 45 × 148 /100
? / 100 × 5525 = 729.6 - 66.6 = 663
? = 663 × 100 / 5525 = 12
3). Answer: d)
(4^6)^3.7 ÷ (4^4)^4.3 × (4^3)^5 ÷ (4^2)^-4 = (4)^?
(4)^? = (4)^22.2 ÷ (4)^17.2 × (4)^15 ÷ (4)^-8
(4)^? = (4)^(22.2 -17.2 + 15 + 8) = (4)^28
? = 28
(4^6)^3.7 ÷ (4^4)^4.3 × (4^3)^5 ÷ (4^2)^-4 = (4)^?
(4)^? = (4)^22.2 ÷ (4)^17.2 × (4)^15 ÷ (4)^-8
(4)^? = (4)^(22.2 -17.2 + 15 + 8) = (4)^28
? = 28
4. 3 2/7 of 4 5/11 of 3/35 of 3080 = ?
4). Answer: a)
? = 3 2/7 of 4 5/11 of 3/35 of 3080
? = 23/7 × 49/11 × 3/35 × 3080
? = 3864
? = 3 2/7 of 4 5/11 of 3/35 of 3080
? = 23/7 × 49/11 × 3/35 × 3080
? = 3864
5). [5√(2√38416)]^(5/2) = ?
5). Answer: a)
[5√(2√38416)]^(5/2) = ?
? = [5√196]^(5/2)
? = 196^(1/2) = 14
[5√(2√38416)]^(5/2) = ?
? = [5√196]^(5/2)
? = 196^(1/2) = 14
6. 4/7 of 3/11 of 24/13 of 15015 = ?
6). Answer: b)
? = 4/7 × 3/11 × 24/13 × 15015
? = 4320
? = 4/7 × 3/11 × 24/13 × 15015
? = 4320
7. 984 + 3.75 × 440 - 1.25 × 248 = ?
7). Answer: c)
? = 984 + 1650 - 310
= 2634 - 310 = 2324
? = 984 + 1650 - 310
= 2634 - 310 = 2324
8. [3√(2√20736)]^(3/2) = ?
8). Answer: d)
? = [3√(2√20736)]^(3/2)
? = [3√(144)]^(3/2)
? = 144^(1/2) = 12
9. (?% of 664) ÷ 0.8 = 332? = [3√(2√20736)]^(3/2)
? = [3√(144)]^(3/2)
? = 144^(1/2) = 12
9). Answer: e)
? / 100 × 664 = 332 × 0.8 = 265.6
? = 265.6 × 100 / 664 = 40
? / 100 × 664 = 332 × 0.8 = 265.6
? = 265.6 × 100 / 664 = 40
10.18.5 % of 7200 + 27.8% of 1800 + 16.6 = (?)^2
10). Answer: c)
(?)^2 = 18.5 × 7200 /100 + 27.8 × 1800 /100 + 16.6
(?)^2 = 1332 + 500.4 + 16.6 = 1849 = (43)2
? = 43
(?)^2 = 18.5 × 7200 /100 + 27.8 × 1800 /100 + 16.6
(?)^2 = 1332 + 500.4 + 16.6 = 1849 = (43)2
? = 43
Direction (11-20): What approximate value should come in place of question mark (?) in the following questions?
11.379.87 × 44.12 - 78.89 × 84.15 + 373 = ?
11). Answer: b)
? ≈ (380 × 44) - (79 × 84) + 373
? = 16720 - 6636 + 373 = 10457 ≈ 10460
? ≈ (380 × 44) - (79 × 84) + 373
? = 16720 - 6636 + 373 = 10457 ≈ 10460
12. (2.38% of 743) × (1.84% of 588) = ?
12). Answer: a)
? ≈ 2.4 × 740 /100 × 1.8 × 590 / 100
? = 17.76 × 10.62 = 188.6112 ≈ 190
13. 182.06 × 17.987 + 172% of 785 = ?? ≈ 2.4 × 740 /100 × 1.8 × 590 / 100
? = 17.76 × 10.62 = 188.6112 ≈ 190
13). Answer: e)
? ≈ 182 × 18 + 172 × 785 /100
? = 3276 + 1350.2 = 4626.2 ≈ 4625
14. 17.99 × 155.05 + 1245 ÷ 32 = ?? ≈ 182 × 18 + 172 × 785 /100
? = 3276 + 1350.2 = 4626.2 ≈ 4625
14).Answer: d)
? = 18 × 155 + 1245 / 32
? = 2790 + 38.9 = 2828.9 ≈ 2830
15. 77.003 × 13.998 + 18.04 × 14.996 = ?? = 18 × 155 + 1245 / 32
? = 2790 + 38.9 = 2828.9 ≈ 2830
15). Answer: c)
? ≈ 77 × 14 + 18 × 15
? = 1078 + 270 = 1348 ≈ 1350
16. 22% of 164.4 + 13.89 % of 65 = ?? ≈ 77 × 14 + 18 × 15
? = 1078 + 270 = 1348 ≈ 1350
16). Answer: b)
? ≈ 22 × 164.4/100 + 14 × 65 / 100
? ≈ 36 + 9 = 45
17. [(1.29)^2 + (3.05)^2] / 0.198 = ?? ≈ 22 × 164.4/100 + 14 × 65 / 100
? ≈ 36 + 9 = 45
17). Answer: d)
? ≈ [(1.3)^2 + (3)^2 ] / 0.2
? = (1.69 + 9) / 0.2
? = 10.7 / 0.2 = 53.5 ≈ 54
18. (48.84)^2 × 7.079 = ?? ≈ [(1.3)^2 + (3)^2 ] / 0.2
? = (1.69 + 9) / 0.2
? = 10.7 / 0.2 = 53.5 ≈ 54
18). Answer: d)
? ≈ 7 × 49^2
? = 16807 ≈ 16800
? ≈ 7 × 49^2
? = 16807 ≈ 16800
19. √ 2020 + √320 + √1330 = ?
19). Answer: b)
√2020 ≈ 45, √320 ≈ 18, √1330 ≈ 36.5
? = 45 + 18 + 36.5 = 99.5 ≈ 100
√2020 ≈ 45, √320 ≈ 18, √1330 ≈ 36.5
? = 45 + 18 + 36.5 = 99.5 ≈ 100
20. (8/3 × 13/5) + (7/2 × 5/3) + (18/7 × 28/16) = ?
20). Answer: c)
? = 104 / 15 + 35 / 6 + 9 / 2
? ≈ 7 + 6 + 4.5 = 17.5
Direction (21 – 25): In the following number series only one number is wrong. Find out the wrong number.21. 18.3, 20.6 , 16, 22.9 , 13.7, 22.2, 11.4? = 104 / 15 + 35 / 6 + 9 / 2
? ≈ 7 + 6 + 4.5 = 17.5
21). Answer: a)
The series is,
18.3 + 2.3 = 20.6
20.6 - 4.6 = 16
16 + 6.9 = 22.9
22.9 - 9.2 = 13.7
13.7 +11.5 = 25.2 ≠ 22.2
25.2 - 13.8 = 11.4
The series is,
18.3 + 2.3 = 20.6
20.6 - 4.6 = 16
16 + 6.9 = 22.9
22.9 - 9.2 = 13.7
13.7 +11.5 = 25.2 ≠ 22.2
25.2 - 13.8 = 11.4
22. 9 , 5 , 6 , 10.5 , 23 , 61, 183
22). Answer: c)
The sequence in the series is,
9 x 0.5 + 0.5 = 5
5 x 1 + 1 = 6
6 x 1.5 + 1.5 = 10.5
10.5 x 2 + 2 = 23
23 x 2.5 + 2.5 = 60 ≠ 61
60 x 3 + 3 = 183
The sequence in the series is,
9 x 0.5 + 0.5 = 5
5 x 1 + 1 = 6
6 x 1.5 + 1.5 = 10.5
10.5 x 2 + 2 = 23
23 x 2.5 + 2.5 = 60 ≠ 61
60 x 3 + 3 = 183
23. 188, 154, 140, 132 ,128, 126 , 125
23). Answer: e)
The series is,
188 - 32 = 156 ≠ 154
156 - 16 = 140
140 - 8 = 132
132 - 4 = 128
128 - 2 = 126
126 - 1 = 125
24. 2, 4 , 11 , 37 , 151 , 771 , 4633The series is,
188 - 32 = 156 ≠ 154
156 - 16 = 140
140 - 8 = 132
132 - 4 = 128
128 - 2 = 126
126 - 1 = 125
24). Answer: d)
The sequence in the series is,
2 x 1 + 2 = 4
4 x 2 + 3 = 11
11 x 3 + 4 = 37
37 x 4 + 5 = 153 ≠ 151
153 x 5 + 6 = 771
771 x 6 + 7 = 4633
The sequence in the series is,
2 x 1 + 2 = 4
4 x 2 + 3 = 11
11 x 3 + 4 = 37
37 x 4 + 5 = 153 ≠ 151
153 x 5 + 6 = 771
771 x 6 + 7 = 4633
25. 391 , 394 , 399 , 411 , 431 , 461, 503
25). Answer: b)
The series is,
391 + 2 = 393 ≠ 394
393 + 6 = 399
399 + 12 = 411
411+ 20 = 431
431 + 30 = 461
461 +42 = 503
The series is,
391 + 2 = 393 ≠ 394
393 + 6 = 399
399 + 12 = 411
411+ 20 = 431
431 + 30 = 461
461 +42 = 503
Direction (26-30): In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and given answer:
a) if x > y
b) if x < y
c) if x ≥ y
d) if x ≤ y
e) if x =y, or no relation can be established between x and y.
II. 3y^2 – 49y + 200 = 0
26). Answer: a)
I. 5x^2 - 45x - 42x + 378 = 0
or,5x(x - 9) - 42(x- 9) = 0
or. (5x - 42)(x -9) = 0
x = 9, 42/5
II. 3y^2 - 24y - 25y + 200=0
or, 3y(y - 8) -25(y - 8) = 0 or, (y - 8)(3y-25)=0
y = 8, 25/3
Hence, x>y
I. 5x^2 - 45x - 42x + 378 = 0
or,5x(x - 9) - 42(x- 9) = 0
or. (5x - 42)(x -9) = 0
x = 9, 42/5
II. 3y^2 - 24y - 25y + 200=0
or, 3y(y - 8) -25(y - 8) = 0 or, (y - 8)(3y-25)=0
y = 8, 25/3
Hence, x>y
27.I. 10x^2 – x – 24 = 0
II. y^2 – 2y = 0
27). Answer: e)
I. 10x^2 -16x + 15x – 24 = 0
or, 2x(5x -8) + 3(5x - 8)=0
or,(2x + 3)(5x -8) = 0
x = -3/2, 8/5
II. y^2 – 2y = 0
or, y(y -2) = 0
y = 0, 2
i.e. no relationship between x and y.
28. I. x^2 – 5x + 6 = 0I. 10x^2 -16x + 15x – 24 = 0
or, 2x(5x -8) + 3(5x - 8)=0
or,(2x + 3)(5x -8) = 0
x = -3/2, 8/5
II. y^2 – 2y = 0
or, y(y -2) = 0
y = 0, 2
i.e. no relationship between x and y.
II. 2y^2 – 15y + 27 = 0
28). Answer: d)
I. x^2 - 2x - 3x + 6 =0
or, x(x -2) - 3(x -2) = 0
or, (x -2) (x -3) = 0
x =2, 3
II. 2y^2 - 6y - 9y + 27 = 0
or, 2y(y - 3)-9(y -3) = 0
or, (y- 3) (2y -9) = 0
y = 3, 9/2
hence, x ≤ y
29. I. 3x + 2y = 301I. x^2 - 2x - 3x + 6 =0
or, x(x -2) - 3(x -2) = 0
or, (x -2) (x -3) = 0
x =2, 3
II. 2y^2 - 6y - 9y + 27 = 0
or, 2y(y - 3)-9(y -3) = 0
or, (y- 3) (2y -9) = 0
y = 3, 9/2
hence, x ≤ y
II. 7x – 5y = 74
29). Answer: b)
I. eqn (I) × 5 + eqn (II) × 2
[15x + 10y = 1505] + [14x – 10y = 148] = 29x = 1653
x = (1653/29) = 57
and y = 65
hence, x< y
30. I. 14x^2 – 37x + 24 = 0I. eqn (I) × 5 + eqn (II) × 2
[15x + 10y = 1505] + [14x – 10y = 148] = 29x = 1653
x = (1653/29) = 57
and y = 65
hence, x< y
II. 28y^2 – 53y + 24 = 0
30). Answer: c)
14x^2 - 37x + 24 = 0
or, 14x^2 - 21x- 16x + 24 = 0
or, 7x(2x -3) -8(2x -3) = 0
or, (2x - 3)(7x - 8) = 0
x = (3/2), (8/7)
II. 28y^2 - 53y + 24 = 0
or, 28y^2 -21y - 32y + 24 =0
or, 7y(4y - 3) -8(4y - 3) = 0
or, (7y - 8) (4y - 3) = 0
y = 8/7, 3/4
x ≥ y
14x^2 - 37x + 24 = 0
or, 14x^2 - 21x- 16x + 24 = 0
or, 7x(2x -3) -8(2x -3) = 0
or, (2x - 3)(7x - 8) = 0
x = (3/2), (8/7)
II. 28y^2 - 53y + 24 = 0
or, 28y^2 -21y - 32y + 24 =0
or, 7y(4y - 3) -8(4y - 3) = 0
or, (7y - 8) (4y - 3) = 0
y = 8/7, 3/4
x ≥ y
No comments:
Post a Comment