Crack IBPS Exam 2017 - Quantitative Aptitude Scoring Part (Day-19):
Dear Readers, Nowadays most of the aspirants are facing huge trouble to increase the overall marks. To score high you need to practice more and more standard questions daily. “Practice does not make perfect, Only Perfect Practice makes perfect”.
Direction (1-10): What value should come in place of question mark (?) in the following questions?
1). 7.8% of 275 + 3.2% of 155 = 1% of?
1). Answer: b)
1 × ? / 100 = 21.45 + 4.96 = 26.41
? = 2641
2. 12/19 of 7/5 of 45% of 8075 = ?1 × ? / 100 = 21.45 + 4.96 = 26.41
? = 2641
2). Answer: d)
? = 12/19 × 7/5 × 45/100 × 8075 = 3213
3. 4/13 of 2379 + 2/15 of 2265 = 20% of ?? = 12/19 × 7/5 × 45/100 × 8075 = 3213
3). Answer: c)
20 × ?/100 = 732 + 302 = 1034
? = 5 × 1034 = 5170
20 × ?/100 = 732 + 302 = 1034
? = 5 × 1034 = 5170
4. (4913)^(2/3) × (2197)^(2/3) = 221 × ?
4). Answer: b)
4913 = 17 × 17 × 17 and
2197 = 13 × 13 × 13
? = (17^3)^(2/3) × (13^3)^(2/3) / 221
? = (17)^2 × (13)^2 / 221
? = 221
4913 = 17 × 17 × 17 and
2197 = 13 × 13 × 13
? = (17^3)^(2/3) × (13^3)^(2/3) / 221
? = (17)^2 × (13)^2 / 221
? = 221
5). 65% of 132 + 12.5% of 57.6 = ? × 3
5). Answer: b)
3 × ? = 65 × 132/100 + 12.5 × 57.6/100
3 × ? = 85.8 + 7.2 = 93
? = 93/3 = 31
3 × ? = 65 × 132/100 + 12.5 × 57.6/100
3 × ? = 85.8 + 7.2 = 93
? = 93/3 = 31
6. (√5 - √10)^2 + (√2 + 5)^2 = (?)^3 – 22
6). Answer: e)
(?)^3 -22= (√5 - √10)2 + (√2 + 5)^2
(?)^3 -22 = 5 - 2√50 + 10 + 2 + 10 √2 + 25
(?)^3 -22 = 5 -10√2 +10 + 2 +10 √2 + 25
(?)^3 -22 = 42
or, (?)^3 = 42 + 22 = 64
? = ³√64 = 4
(?)^3 -22= (√5 - √10)2 + (√2 + 5)^2
(?)^3 -22 = 5 - 2√50 + 10 + 2 + 10 √2 + 25
(?)^3 -22 = 5 -10√2 +10 + 2 +10 √2 + 25
(?)^3 -22 = 42
or, (?)^3 = 42 + 22 = 64
? = ³√64 = 4
7. 55% of √2116 ÷ 0.01 = ? × 20
7). Answer: a)
55 ×√2116 /100 ÷ 0.01 = ? × 20
Wkt, √2116 = √(46 × 46) = 46
or, ? × 20 = 55 × 46 / (100 × 0.01) = 55 × 46 / 1 = 2530
? = 2530 / 20 = 126.5
55 ×√2116 /100 ÷ 0.01 = ? × 20
Wkt, √2116 = √(46 × 46) = 46
or, ? × 20 = 55 × 46 / (100 × 0.01) = 55 × 46 / 1 = 2530
? = 2530 / 20 = 126.5
8. √(12^2 × 16 ÷ 24 +193 + 7 × 5) = (?)^2
8). Answer: a)
?2 = √(12^2 × 16 ÷ 24 +193 + 7 × 5)
?2 = √(144 × 16 / 24 + 193 + 35)
=√(96 + 193 + 35) = √324
or, (?)^2 = √324 =18
? = √18 = √(3 × 3 × 2)
? = 3 √2
9. √31.36 ÷ √0.64 × 252 = (?)^2 × 36?2 = √(12^2 × 16 ÷ 24 +193 + 7 × 5)
?2 = √(144 × 16 / 24 + 193 + 35)
=√(96 + 193 + 35) = √324
or, (?)^2 = √324 =18
? = √18 = √(3 × 3 × 2)
? = 3 √2
9). Answer: d)
(?)2 = √31.36 ÷√0.64 ×252 / 36
= 5.6 / 0.8 × 252 / 36
= 7 × 252 / 36 = 49
? = √49 = ±7
Hence, - 7
(?)2 = √31.36 ÷√0.64 ×252 / 36
= 5.6 / 0.8 × 252 / 36
= 7 × 252 / 36 = 49
? = √49 = ±7
Hence, - 7
10. (1.69)^4 ÷ (2197 ÷ 1000)^3 × (0.13 × 10)^3 = (1.3)^(?-2)
10). Answer: c)
(1.69)^4 ÷ (2197/1000)^3 × 1.3^3 = 1.3^(? – 2)
or, (1.3)^8 ÷ (1.3)^(3×3) × 1.3^3 = 1.3^(?–2)
or, 1.3^(8-9+3) = 1.3^(?-2)
or, 1.32 = 1.3?-2
or, ? - 2 = 2
? = 2 + 2 = 4
(1.69)^4 ÷ (2197/1000)^3 × 1.3^3 = 1.3^(? – 2)
or, (1.3)^8 ÷ (1.3)^(3×3) × 1.3^3 = 1.3^(?–2)
or, 1.3^(8-9+3) = 1.3^(?-2)
or, 1.32 = 1.3?-2
or, ? - 2 = 2
? = 2 + 2 = 4
Direction (11-20): What approximate value should come in place of question mark (?) in the following questions?
11. √164 × ³√ 615 = ?
11). Answer: c)
? ≈ 12.8 × 8.5 = 108.8 ≈ 110
? ≈ 12.8 × 8.5 = 108.8 ≈ 110
12. (√485 × 3.48) × 12.08 = ?
12). Answer: b)
? ≈ (22 × 3.5) × 12 = 924 ≈ 925
13. 29.03 × 24.96 – 7.98 × ³√3370 = ?? ≈ (22 × 3.5) × 12 = 924 ≈ 925
13). Answer: d)
? ≈ 29 × 25 - 8 × 15 = 725 - 120 = 605 ≈ 600
14. 245% of 49.962 – 115.03% of 41.89 = ?? ≈ 29 × 25 - 8 × 15 = 725 - 120 = 605 ≈ 600
14). Answer: a)
? ≈ 245 × 50 /100 – 115 × 42/100
? = 122.5 - 48.3 = 74.2 ≈ 75
15. √5930 × ³√43 = ?? ≈ 245 × 50 /100 – 115 × 42/100
? = 122.5 - 48.3 = 74.2 ≈ 75
15). Answer: c)
? = √5930 × ³√43 ≈ 77 × 3.5
= 269.5 ≈ 270
16. { √2300 ÷11.98 / 8.51} × 7.48 = ?? = √5930 × ³√43 ≈ 77 × 3.5
= 269.5 ≈ 270
16). Answer: d)
? ≈ {48 ÷ 12/8.5} × 7.5 = 34 × 7.5 = 255
17.{10.71% of 1984.96 + 3.89% of 1451} ÷ ( 12.49)^(–1) = ?? ≈ {48 ÷ 12/8.5} × 7.5 = 34 × 7.5 = 255
17). Answer: b)
? ≈ (212.395 + 56.55) × 12.5
= 268.945 × 12.5
? = 3361.8 ≈ 3360
18.{ √33850 × ³√91100} ÷ 8.98 = ?? ≈ (212.395 + 56.55) × 12.5
= 268.945 × 12.5
? = 3361.8 ≈ 3360
18). Answer: c)
? ≈ (184 × 45) ÷ 9 = 184 × 5 = 920
? ≈ (184 × 45) ÷ 9 = 184 × 5 = 920
19. {(219.06 × 24.98) - (23.84 × 55.05)} × 8.49 = ?
19). Answer: e)
? ≈ {(220 × 25) - (24 × 55)} × 8.5
= (5500 - 1320) × 8.5 = 4180 × 8.5
? = 35530 ≈ 35500
? ≈ {(220 × 25) - (24 × 55)} × 8.5
= (5500 - 1320) × 8.5 = 4180 × 8.5
? = 35530 ≈ 35500
20.(√1120 × 183.98) + 465.02% of 171.95 = ?
20). Answer: a)
? ≈ (33.5 × 184) + 465 × 172 / 100
≈ 6164 + 800
? = 6964 ≈ 6960
Direction (21 – 25): In the following number series only one number is wrong. Find out the wrong number.21. 8, 125, 1331, 4913, ?? ≈ (33.5 × 184) + 465 × 172 / 100
≈ 6164 + 800
? = 6964 ≈ 6960
21). Answer: c)
The series is, alternate prime number cube
i.e., 2^3 , 5^3 , 11^3 , 17^3 , 23^3
The series is, alternate prime number cube
i.e., 2^3 , 5^3 , 11^3 , 17^3 , 23^3
22. 5, 25, 7, ?, 9, 19
22). Answer: b)
The first series is, 5, 7, 9
The difference between the numbers is +2, +2, ..
The second series is 25, ?, 19
The difference between the numbers is -3, -3, ..
The first series is, 5, 7, 9
The difference between the numbers is +2, +2, ..
The second series is 25, ?, 19
The difference between the numbers is -3, -3, ..
23. 980, 392, 156.8, ?, 25.088, 10.0352
23). Answer: a)
The sequence of the series is ×2/5, ×2/5, ×2/5, ….
24. 5, 9, 21, 37, 81, ?The sequence of the series is ×2/5, ×2/5, ×2/5, ….
24). Answer: b)
The sequence of the series is, ×2 -1, × 2 +3, × 2 – 5, × 2 + 7, × 2 – 9
The sequence of the series is, ×2 -1, × 2 +3, × 2 – 5, × 2 + 7, × 2 – 9
25. 45, 46, 70, 141, ?, 1061.5
25). Answer: b)
The sequence of the series is, ×1 +1, × 1.5 + 1, × 2 + 1, × 2.5 + 1, × 3 + 1
The sequence of the series is, ×1 +1, × 1.5 + 1, × 2 + 1, × 2.5 + 1, × 3 + 1
Direction (26-30): In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and given answer:
a) If x < y
b) If x ≥ y
c) If x ≤ y
d) If x = y or no relationship can be established
e) If x > y
II. 3y^2 + 10y + 8 = 0
26). Answer: d)
I. 3x^2 + 11x + 6 = 0
or, 3x^2 + 9x + 2x + 6 = 0
or, 3x (x +3 ) + 2 (x + 3) = 0
or, (3x + 2) (x + 3) = 0
x = -2/3, - 3
II. 3y^2 + 10y + 8 = 0
or, 3y^2 + 6y + 4y + 8 = 0
or, 3y (y +2) + 4 (y + 2) = 0
or, (3y + 4) (y + 2) = 0
y = -4/3, - 2
Hence, no relationship can be established.
I. 3x^2 + 11x + 6 = 0
or, 3x^2 + 9x + 2x + 6 = 0
or, 3x (x +3 ) + 2 (x + 3) = 0
or, (3x + 2) (x + 3) = 0
x = -2/3, - 3
II. 3y^2 + 10y + 8 = 0
or, 3y^2 + 6y + 4y + 8 = 0
or, 3y (y +2) + 4 (y + 2) = 0
or, (3y + 4) (y + 2) = 0
y = -4/3, - 2
Hence, no relationship can be established.
27.I. 3x^2 - 7x + 2 = 0
II. 2y^2 - 9y + 10 = 0
27). Answer: c)
I. 3x^2 - 7x + 2 = 0
or, 3x^2 - 6x - x + 2 = 0
or, 3x (x -2) - 1 (x - 2) = 0
or, (3x - 1) (x - 2) = 0
x = 1/3, 2
II. 2y^2 - 9y + 10 = 0
or, 2y^2 – 5y - 4y + 10 = 0
or, y (2y - 5) -2 (2y - 5) = 0
or, (2y - 5) (y - 2) = 0
y = 5/2, 2
Hence x ≤ y
28. I. x^2 = 9I. 3x^2 - 7x + 2 = 0
or, 3x^2 - 6x - x + 2 = 0
or, 3x (x -2) - 1 (x - 2) = 0
or, (3x - 1) (x - 2) = 0
x = 1/3, 2
II. 2y^2 - 9y + 10 = 0
or, 2y^2 – 5y - 4y + 10 = 0
or, y (2y - 5) -2 (2y - 5) = 0
or, (2y - 5) (y - 2) = 0
y = 5/2, 2
Hence x ≤ y
II. 2y^2 - 19y + 44 = 0
28). Answer: a)
I. x^2 = 9
x = ±3
II. 2y^2 - 19y + 44 = 0
or, 2y^2 – 11y - 8y + 44 = 0
or, y (2y - 11) -4 (2y - 11) = 0
or, (2y - 11) (y - 4) = 0
y = 11/2, 4
Hence x < y
29. I. 2x^2 - 15x + 28 = 0I. x^2 = 9
x = ±3
II. 2y^2 - 19y + 44 = 0
or, 2y^2 – 11y - 8y + 44 = 0
or, y (2y - 11) -4 (2y - 11) = 0
or, (2y - 11) (y - 4) = 0
y = 11/2, 4
Hence x < y
II. 4y^2 - 23y + 30 = 0
29). Answer: d)
I. 2x^2 - 15x + 28 = 0
or, 2x^2 - 7x - 8x + 28 = 0
or, x (2x -7) - 4 (2x - 7) = 0
or, (2x - 7) (x - 4) = 0
x = 7/2, 4
II. 4y^2 - 23y + 30 = 0
or, 4y^2 – 15y - 8y + 30 = 0
or, y (4y - 15) -2 (4y - 15) = 0
or, (4y - 15) (y - 2) = 0
y = 15/4, 2
Hence no relationship can be established.
30. I. 2x^2 - 15x + 27 = 0I. 2x^2 - 15x + 28 = 0
or, 2x^2 - 7x - 8x + 28 = 0
or, x (2x -7) - 4 (2x - 7) = 0
or, (2x - 7) (x - 4) = 0
x = 7/2, 4
II. 4y^2 - 23y + 30 = 0
or, 4y^2 – 15y - 8y + 30 = 0
or, y (4y - 15) -2 (4y - 15) = 0
or, (4y - 15) (y - 2) = 0
y = 15/4, 2
Hence no relationship can be established.
II. 5y^2 - 26y + 33 = 0
30). Answer: b)
I. 2x^2 - 15x + 27 = 0
or, 2x^2 - 9x - 6x + 27 = 0
or, x (2x -9) - 3 (2x - 9) = 0
or, (2x - 9) (x - 3) = 0
x = 9/2, 3
II. 5y^2 - 26y + 33 = 0
or, 5y^2 – 15y - 11y + 33 = 0
or, 5y (y - 3) -11 (y - 3) = 0
or, (5y - 11) (y - 3) = 0
y = 11/5, 3
Hence x ≥ y
I. 2x^2 - 15x + 27 = 0
or, 2x^2 - 9x - 6x + 27 = 0
or, x (2x -9) - 3 (2x - 9) = 0
or, (2x - 9) (x - 3) = 0
x = 9/2, 3
II. 5y^2 - 26y + 33 = 0
or, 5y^2 – 15y - 11y + 33 = 0
or, 5y (y - 3) -11 (y - 3) = 0
or, (5y - 11) (y - 3) = 0
y = 11/5, 3
Hence x ≥ y
Do you feel that you are weak in English Section?
Here we are creating a pathway to win the English Section in upcoming IBPS Exams 2017
No comments:
Post a Comment