Crack IBPS Exam 2017 - Quantitative Aptitude Scoring Part (Day-17):
Dear Readers, Nowadays most of the aspirants are facing huge trouble to increase the overall marks. To score high you need to practice more and more standard questions daily. “Practice does not make perfect, Only Perfect Practice makes perfect”.
Direction (1-10): What value should come in place of question mark (?) in the following questions?
1). √? =(153 × 46) ÷ 18
1). Answer: c)
√? = 153 × 46 / 18 = 391
? = (391)^2 = 152881
2. (3834 ÷ 27) × (3920 ÷ 112) = ?√? = 153 × 46 / 18 = 391
? = (391)^2 = 152881
2). Answer: e)
? = 3834 / 27 × 3920 / 112 = 142 × 35 = 4970
3. 2.8% of 1220 + 7.4% of 780 = ?? = 3834 / 27 × 3920 / 112 = 142 × 35 = 4970
3). Answer: b)
? = 2.8 × 1220 / 100 + 7.4 × 780 / 100
? = 34.16 + 57.72 = 91.88
? = 2.8 × 1220 / 100 + 7.4 × 780 / 100
? = 34.16 + 57.72 = 91.88
4. 0.6 × 2.8 × 3.5 ÷ 0.0049 = ?
4). Answer: d)
? = 0.6 × 2.8 × 3.5 / 0.0049
? = 5.88 / 0.0049 = 1200
? = 0.6 × 2.8 × 3.5 / 0.0049
? = 5.88 / 0.0049 = 1200
5). 30% of √15625 + 70% of ³√3375 = ?
5). Answer: a)
? = 30/100 × 125 + 70 /100 × 15
? = 37.5 + 10.5 = 48
? = 30/100 × 125 + 70 /100 × 15
? = 37.5 + 10.5 = 48
6. (125 ÷ 0.5) ÷ 0.5 = 80% of?
6). Answer: e)
80 / 100 × ? = (125 ÷ 0.5) ÷ 0.5
80/100 × ? = 250 ÷ 0.5 = 500
? = 500 × 100 /80 = 625
80 / 100 × ? = (125 ÷ 0.5) ÷ 0.5
80/100 × ? = 250 ÷ 0.5 = 500
? = 500 × 100 /80 = 625
7. √√194481 = ?
7). Answer: c)
√√194481 = √441 = 21
√√194481 = √441 = 21
8. 8.5 / 0.25 + 4.4 / 0.2 = ?% of 80
8). Answer: c)
8.5 / 0.25 + 4.4 / 0.2 = 80 × ? / 100
or, 8.5 × 4 + 4.4 × 5 = 4 × ? / 5
? = (34 + 22) × 5 / 4 = 70
9. 3/5 of 4/7 of 9/11 of 21175 = 2^2 × 3^3 × ?8.5 / 0.25 + 4.4 / 0.2 = 80 × ? / 100
or, 8.5 × 4 + 4.4 × 5 = 4 × ? / 5
? = (34 + 22) × 5 / 4 = 70
9). Answer: e)
? = 3 × 4 × 9 × 21175 / (5 × 7 × 11 × 2^2 × 3^3)
? = 21175 / (5 × 7 × 11)
? = 21175 / 385 = 55
? = 3 × 4 × 9 × 21175 / (5 × 7 × 11 × 2^2 × 3^3)
? = 21175 / (5 × 7 × 11)
? = 21175 / 385 = 55
10. [³√(√83521)]^(3/2) = ?
10). Answer: b)
? = [³√(√83521)]^(3/2)
? = [³√289]^(3/2)
? = [(289)^(1/3)]^(3/2)
? = [(289)^(1/2)
? = 17
? = [³√(√83521)]^(3/2)
? = [³√289]^(3/2)
? = [(289)^(1/3)]^(3/2)
? = [(289)^(1/2)
? = 17
Direction (11-20): What approximate value should come in place of question mark (?) in the following questions?
11. 68% of 1288 + 26% of 734 - 215 = ?
11). Answer: d)
? = 68 × 1288 / 100 + 26 × 734 / 100 – 215
? = 875.84 + 190.84 - 215
? ≈ 876 + 191 - 215 = 852 ≈ 850
? = 68 × 1288 / 100 + 26 × 734 / 100 – 215
? = 875.84 + 190.84 - 215
? ≈ 876 + 191 - 215 = 852 ≈ 850
12. (32.05)^2 - (18.9)^2 - (11.9)^2 = ?
12). Answer: b)
? = (32.05)^2 - (18.9)^2 - (11.9)^2
? ≈ 1027 - 357 - 144 = 526 ≈ 530
13. 6578 ÷ 67 × 15 = ? × 6? = (32.05)^2 - (18.9)^2 - (11.9)^2
? ≈ 1027 - 357 - 144 = 526 ≈ 530
13). Answer: b)
? = 6578 × 15 / (67 × 6)
? = 245.44 ≈ 250
14. 679 / 45 ÷ 23 / 2130 × 126 / 169 = ?? = 6578 × 15 / (67 × 6)
? = 245.44 ≈ 250
14). Answer: e)
? ≈ 680 / 45 × 2130 / 23 × 126 / 170
? = 1043.35 ≈ 1040
15. √5687 × √1245 ÷ √689 = ? ÷ 13? ≈ 680 / 45 × 2130 / 23 × 126 / 170
? = 1043.35 ≈ 1040
15). Answer: c)
√5687 × √1245 ÷ √689 = ? ÷ 13
? = √5687 × √1245 × 13 / √689
? = 75.4 × 35.2 × 13 / 26.2
? = 1316.9 ≈ 1320
16. 339% of 705.62 + 136% of 1329 = ?√5687 × √1245 ÷ √689 = ? ÷ 13
? = √5687 × √1245 × 13 / √689
? = 75.4 × 35.2 × 13 / 26.2
? = 1316.9 ≈ 1320
16). Answer: c)
? ≈ 340 × 705 / 100 + 136 × 1330 / 100
? = 2397 + 1808.8 = 4205.8 ≈ 4200
17. 29.78 × 14.12 + 40.65 × 11.79 = ?? ≈ 340 × 705 / 100 + 136 × 1330 / 100
? = 2397 + 1808.8 = 4205.8 ≈ 4200
17). Answer: b)
? ≈ 30 × 14 + 40 × 12 = 420 + 480 = 900
18. 570.80 × 9.09 × ? = 230855? ≈ 30 × 14 + 40 × 12 = 420 + 480 = 900
18). Answer: a)
? ≈ 230855 / (570 × 9) = 45
? ≈ 230855 / (570 × 9) = 45
19. 33.33 × 333.3 = ?
19). Answer: c)
? = 33.33 × 333.3
? = 3333 × 3333 / 1000
= 11108.889 ≈ 11110
? = 33.33 × 333.3
? = 3333 × 3333 / 1000
= 11108.889 ≈ 11110
20. 1.71% of 1606 + 0.705% of 1005 = ?
20). Answer: d)
? ≈ 1.7 × 1600/100 + 0.7 × 1000 /100
? = 27.2 + 7
? = 34.2 ≈ 34
Direction (21 – 25): In the following number series only one number is wrong. Find out the wrong number.21. 6, 1338, 3074, 5298, ?? ≈ 1.7 × 1600/100 + 0.7 × 1000 /100
? = 27.2 + 7
? = 34.2 ≈ 34
21). Answer: d)
The difference between numbers is, +1³+11³ , +2³+12³ ,+3³+13³ , +4³+14³
The difference between numbers is, +1³+11³ , +2³+12³ ,+3³+13³ , +4³+14³
22. 2199, 868, 139, 14, ?
22). Answer: e)
The difference between numbers is - 11³ , - 9³ , - 5³ , +1³ , ….
(i.e. the difference between the numbers is 2 [11-9], 4 [9-5], 6 [1-(-5)] ,…..)
The difference between numbers is - 11³ , - 9³ , - 5³ , +1³ , ….
(i.e. the difference between the numbers is 2 [11-9], 4 [9-5], 6 [1-(-5)] ,…..)
23. 3, 36, 153, 408, ?
23). Answer: a)
The series is,
(1³ +1³) + 1 = 3
(2³ +3³) + 1 = 36
(3³ +5³) + 1 = 153
(4³ +7³) + 1 = 408
(5³ +9³) + 1 = 855
24. 10, 36, 92, 190, 342, ?The series is,
(1³ +1³) + 1 = 3
(2³ +3³) + 1 = 36
(3³ +5³) + 1 = 153
(4³ +7³) + 1 = 408
(5³ +9³) + 1 = 855
24). Answer: b)
The series is,
(1³ +2³) + 1 = 10
(2³ +3³) + 1 = 36
(3³ +4³) + 1 = 92
(4³ +5³) + 1 = 190
(5³ +6³) + 1 = 342
(6³ +7³) + 1 = 560
The series is,
(1³ +2³) + 1 = 10
(2³ +3³) + 1 = 36
(3³ +4³) + 1 = 92
(4³ +5³) + 1 = 190
(5³ +6³) + 1 = 342
(6³ +7³) + 1 = 560
25. 2, 65, 730, 4097,?
25). Answer: c)
The series is,
(1³ x 1³) + 1 = 2
(2³ x 2³) + 1 = 65
(3³ x 3³) + 1 = 730
(4³ x 4³) + 1 = 4097
(5³ x 5³) +1 = 15626
The series is,
(1³ x 1³) + 1 = 2
(2³ x 2³) + 1 = 65
(3³ x 3³) + 1 = 730
(4³ x 4³) + 1 = 4097
(5³ x 5³) +1 = 15626
Direction (26-30): In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and given answer:
a) if x < y
b) if x ≤ y
c) if x = y
d) if x > y
e) if x ≥ y
II. 10y^2 + 38y + 24 = 0
26). Answer: d)
I. 16x^2 + 20x + 6 = 0
or, 16x^2 +12x+8x+6 = 0
or, 4x(4x+3)+y(4x+3)=0
or, (4x + 3)(4x + 2) = 0
x = -(3/4) or –(1/2)
II. 10y^2 +38y+24 = 0
or, 5y^2 +19y+12 = 0
or, 5y^2+15y+4y+12=0
or, (5y + 4) (y + 3) = o
y = -(4/5) or -3
Hence, x> y
I. 16x^2 + 20x + 6 = 0
or, 16x^2 +12x+8x+6 = 0
or, 4x(4x+3)+y(4x+3)=0
or, (4x + 3)(4x + 2) = 0
x = -(3/4) or –(1/2)
II. 10y^2 +38y+24 = 0
or, 5y^2 +19y+12 = 0
or, 5y^2+15y+4y+12=0
or, (5y + 4) (y + 3) = o
y = -(4/5) or -3
Hence, x> y
27. I. 18x^2 + 18x + 4 = 0
II. 12y^2 + 29y + 14 = 0
27). Answer: e)
I. 18x^2 +18x + 4 = 0
or, 9x^2 +9x+2 =0
or, 9x^2+6x+3x+2 =0
or, 3x (3x +2) + 1(3x + 2) = 0
x = -(1/3) or –(2/3)
II. 12y^2 +29y+14=0
or, 12y^2 +21y+8y+14 = 0
or, 3y(4y 7) + 2(4y + 7) =0
or, (3y + 2) (4y + 7) = 0
y= -(2/3) or –(7/4)
Hence, x ≥ y
28. I. 8x^2 + 6x = 5I. 18x^2 +18x + 4 = 0
or, 9x^2 +9x+2 =0
or, 9x^2+6x+3x+2 =0
or, 3x (3x +2) + 1(3x + 2) = 0
x = -(1/3) or –(2/3)
II. 12y^2 +29y+14=0
or, 12y^2 +21y+8y+14 = 0
or, 3y(4y 7) + 2(4y + 7) =0
or, (3y + 2) (4y + 7) = 0
y= -(2/3) or –(7/4)
Hence, x ≥ y
II. 12y^2 – 22y + 8 = 0
28). Answer: b)
I. 8x^2+6x-5=0
or,2x(4x+5)-1( 4x+5) = 0
or, (2x-1)(4x+5) = 0
x = (1/2) or –(5/4)
II.12y^2 -22y+8=0
or, 12y^2 – 16y – 6y + 8 = 0
or, 4y(3y - 4) – 2 (3y -4) = 0
or, (4y - 2) (3y- 4) = 0
y = (1/2) or (4/3)
Hence, x ≤ y
29. I. 17x^2 + 48x = 9I. 8x^2+6x-5=0
or,2x(4x+5)-1( 4x+5) = 0
or, (2x-1)(4x+5) = 0
x = (1/2) or –(5/4)
II.12y^2 -22y+8=0
or, 12y^2 – 16y – 6y + 8 = 0
or, 4y(3y - 4) – 2 (3y -4) = 0
or, (4y - 2) (3y- 4) = 0
y = (1/2) or (4/3)
Hence, x ≤ y
II. 13y^2 = 32y – 12
29). Answer: a)
I. 17x^2 + 48x – 9 = 0
or, 17x^2 + 51x – 3x – 9 = 0
or, (17x -3)(x+3) = 0
x = (3/17) or -3
II. 13y^2 – 32y + 12 = 0
Or, 13y^2 – 26y – 6y + 12 = 0
Or, (13y - 6)(y -2) = 0
Y = (6/13) or 2
Hence x < y.
30. I. 4x + 7y = 209I. 17x^2 + 48x – 9 = 0
or, 17x^2 + 51x – 3x – 9 = 0
or, (17x -3)(x+3) = 0
x = (3/17) or -3
II. 13y^2 – 32y + 12 = 0
Or, 13y^2 – 26y – 6y + 12 = 0
Or, (13y - 6)(y -2) = 0
Y = (6/13) or 2
Hence x < y.
II. 12x - 14y = -38
30). Answer: c)
I. 4x + 7y = 209
Or, 8x+14y=418 …(i)
II. 12x - 14y = -38
From (i) and (ii), we get
20x = 380
x = 19
putting value of x in equation (i),
we get y = 19
x = y
I. 4x + 7y = 209
Or, 8x+14y=418 …(i)
II. 12x - 14y = -38
From (i) and (ii), we get
20x = 380
x = 19
putting value of x in equation (i),
we get y = 19
x = y
Do you feel that you are weak in English Section?
Here we are creating a pathway to win the English Section in upcoming IBPS Exams 2017
No comments:
Post a Comment